Result: Thermal behavior of floating gate oxide defects (moving bits)

Title:
Thermal behavior of floating gate oxide defects (moving bits)
Source:
SiO2, advanced dielectrics and related devices, Mondelo, Palermo, Italy, June 25-28, 2006Journal of non-crystalline solids. 353(5-7):615-619
Publisher Information:
Amsterdam: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 6 ref
Original Material:
INIST-CNRS
Subject Terms:
Crystallography, Cristallographie cristallogenèse, Chemical industry parachemical industry, Industrie chimique et parachimique, Metallurgy, welding, Métallurgie, soudage, Condensed state physics, Physique de l'état condensé, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Electronique, Electronics, Electronique des semiconducteurs. Microélectronique. Optoélectronique. Dispositifs à l'état solide, Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices, Circuits intégrés, Integrated circuits, Circuits intégrés par fonction (dont mémoires et processeurs), Integrated circuits by function (including memories and processors), Comportement thermique, Thermal behavior, Comportamiento térmico, Contrainte électrique, Electric stress, Tensión eléctrica, Courant fuite, Leakage current, Corriente escape, Densité défaut, Defect density, Densidad defecto, Défaut, Defect, Defecto, Effacement, Erasure, Borradura, Effet contrainte, Stress effects, Effet tunnel, Tunnel effect, Efecto túnel, Energie activation, Activation energy, Energía activación, Grille transistor, Transistor gate, Rejilla transistor, Mémoire non volatile, Non volatile memory, Memoria no volátil, Oxyde grille, Gate oxide, Oxido rejilla, Perte information, Information loss, Pérdida información, Piégeage porteur charge, Charge carrier trapping, Captura portador carga, Recuit, Annealing, Recocido, Technologie grille flottante, Floating gate technology, Tecnología rejilla flotante, 85.30.De, Defect annealing, High température, Moving bits, Oxide defects, SILC
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Laboratoire Matériaux et Microélectronique de Provence (L2MP) -Polytech'Marseille, UMR CNRS 6137 IMT-Technopôle de Château-Gombert, 13451 Marseille, France
AMI-Semiconductor Belgium BVBA, Westerring 15, 9700 Oudenaarde, Belgium
ISSN:
0022-3093
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Electronics
Accession Number:
edscal.18642606
Database:
PASCAL Archive

Further Information

The defect density of the oxides used in non-volatile memories (NVM) is a key parameter to the understanding of the data loss of these structures. One of the most critical phenomena responsible for this loss (in the range of oxide thicknesses used in NVM devices) is the stress induced leakage current (SILC). The origin of SILC is generally attributed to the trap assisted tunnelling (TAT); therefore, a better understanding of the evolution of the oxide defects is necessary. It is known that the leakage through the oxide defects is temperature accelerated below 100 °C. Besides, it was observed that above 100 °C, the oxide defects are annealed. To better understand the temperature behavior of the defect population, a dedicated method has been devised and applied to several baking experiments. It leads to new observations and to the correction of some biased interpretations due to unsuitable experimental methods. Indeed, in this paper, we point out the fact that the annealing effect already occurs at 60 °C. The activation energy was calculated and found independent from both the electrical field across the oxide and the number of program/erase (P/E) cycles. The temperature behavior of the leakage is found to be more complex than what was reported in the literature: it is a balance between two opposite phenomena. Based on that, a new model describing the defect population evolution is proposed.