American Psychological Association 6th edition

Chen, S., Devraj, A., Berstein, A., & Meyn, S. (2021). Revisiting the ODE Method for Recursive Algorithms: Fast Convergence Using Quasi Stochastic Approximation. Journal of Systems Science and Complexity, 34(5), 1681-1702. https://doi.org/10.1007/s11424-021-1251-5

ISO-690 (author-date, English)

CHEN, Shuhang, DEVRAJ, Adithya, BERSTEIN, Andrey und MEYN, Sean, 2021. Revisiting the ODE Method for Recursive Algorithms: Fast Convergence Using Quasi Stochastic Approximation. Journal of Systems Science and Complexity. 1 Oktober 2021. Vol. 34, no. 5, p. 1681-1702. DOI 10.1007/s11424-021-1251-5.

Modern Language Association 9th edition

Chen, S., A. Devraj, A. Berstein, und S. Meyn. „Revisiting the ODE Method for Recursive Algorithms: Fast Convergence Using Quasi Stochastic Approximation“. Journal of Systems Science and Complexity, Bd. 34, Nr. 5, Oktober 2021, S. 1681-02, https://doi.org/10.1007/s11424-021-1251-5.

Mohr Siebeck - Recht (Deutsch - Österreich)

Chen, Shuhang/Devraj, Adithya/Berstein, Andrey/Meyn, Sean: Revisiting the ODE Method for Recursive Algorithms: Fast Convergence Using Quasi Stochastic Approximation, Journal of Systems Science and Complexity 2021, 1681-1702.

Emerald - Harvard

Chen, S., Devraj, A., Berstein, A. und Meyn, S. (2021), „Revisiting the ODE Method for Recursive Algorithms: Fast Convergence Using Quasi Stochastic Approximation“, Journal of Systems Science and Complexity, Vol. 34 No. 5, S. 1681-1702.

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.