American Psychological Association 6th edition

Chen, S., Devraj, A., Berstein, A., & Meyn, S. (2021). Revisiting the ODE Method for Recursive Algorithms: Fast Convergence Using Quasi Stochastic Approximation. Journal of Systems Science and Complexity, 34(5), 1681-1702. https://doi.org/10.1007/s11424-021-1251-5

ISO-690 (author-date, English)

CHEN, Shuhang, DEVRAJ, Adithya, BERSTEIN, Andrey and MEYN, Sean, 2021. Revisiting the ODE Method for Recursive Algorithms: Fast Convergence Using Quasi Stochastic Approximation. Journal of Systems Science and Complexity. 1 October 2021. Vol. 34, no. 5, p. 1681-1702. DOI 10.1007/s11424-021-1251-5.

Modern Language Association 9th edition

Chen, S., A. Devraj, A. Berstein, and S. Meyn. “Revisiting the ODE Method for Recursive Algorithms: Fast Convergence Using Quasi Stochastic Approximation”. Journal of Systems Science and Complexity, vol. 34, no. 5, Oct. 2021, pp. 1681-02, https://doi.org/10.1007/s11424-021-1251-5.

Mohr Siebeck - Recht (Deutsch - Österreich)

Chen, Shuhang/Devraj, Adithya/Berstein, Andrey/Meyn, Sean: Revisiting the ODE Method for Recursive Algorithms: Fast Convergence Using Quasi Stochastic Approximation, Journal of Systems Science and Complexity 2021, 1681-1702.

Emerald - Harvard

Chen, S., Devraj, A., Berstein, A. and Meyn, S. (2021), “Revisiting the ODE Method for Recursive Algorithms: Fast Convergence Using Quasi Stochastic Approximation”, Journal of Systems Science and Complexity, Vol. 34 No. 5, pp. 1681-1702.

Warning: These citations may not always be 100% accurate.